
Immune responses that adapt the intestinal mucosa to commensal
intestinal bacteria

Adaptation of the intestinal mucosa in the
presence of commensal bacteria

The lower intestine of mammals contains an extremely

diverse and dense flora of bacteria that are normally

non-pathogenic in an immunocompetent host. These

commensal intestinal bacteria reach densities of 1012

organisms per ml of luminal contents.1 There are about

1000 species present, mostly anaerobes, but less than half

of these species can be successfully cultured ex vivo. This

immense load of commensal bacteria means that the

number of bacterial cells being carried in the intestine is

greater than the number of eukaryotic cells of the host’s

own body. Furthermore, the overall number of genes in

the commensal bacterial flora can be estimated to be at

least two orders of magnitude greater than the gene num-

ber in the host’s own DNA.2 Peaceful coexistence between

our bodies and commensal bacteria is a classic example of

mutualism, which works despite the abundance of bacter-

ial molecules that can potentially activate Toll-like and

other bacterial molecular pattern receptors to trigger

damaging innate immune responses and inflammation.3

The bacteria obtain a secure habitat with a stable tem-

perature, rich in carbon and mineral sources, whereas the

host benefits through the ability of bacteria to salvage

energy from otherwise indigestible dietary constituents

(such as cellulose). Bacteria also synthesize short chain

fatty acids and vitamin K1, which can be used in host

anabolic pathways. Host metabolic pathways are also

directly regulated by the influence of commensals on the

intestinal epithelium.4 Because the available microbiologi-

cal niche is full of commensals, it is harder for potentially

pathogenic bacteria that can produce exotoxins or are

able to adopt a facultative intracellular existence to gain a

foothold.5 The existence of this mutualism, established by

evolution on both sides, has been long appreciated, but

we are only beginning to understand the complex ways

in which host and bacteria each adapt to the other’s

presence.

The adaptation of the intestinal mucosa to the presence

of commensal bacteria has been studied by comparing

germ-free animals bred and kept in a sterile environment,

with the same strain kept using conventional husbandry.

Germ-free animals live in flexible-film isolators, which are

essentially plastic bubbles inflated with sterile filtered air

under positive pressure. All food, water and bedding are

autoclaved and introduced to the isolator using aseptic

protocols. Founder animals for a germ-free colony must
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Summary

Animals contain an enormous load of non-pathogenic bacteria in the lower

intestine, which exploit an environment with a stable temperature and

abundant carbon sources. Our load of bacteria outnumbers our own cells.

In order to survive with such a high number of organisms in very close

proximity to host tissues the intestinal mucosa and its immune system is

highly adapted. Mucosal immune responses are induced by small numbers

of live commensal organisms penetrating the Peyer’s patches and persisting

in dendritic cells (DC). These DC can induce immunoglobulin A+ (IgA+)

B cells, which recirculate through the lymph and bloodstream to populate

the lamina propria and secrete protective IgA. Because DC loaded with

commensal bacteria do not penetrate further than the mesenteric lymph

nodes, immune induction to commensals is confined to the mucosa, allow-

ing strong mucosal immune responses to be induced whilst the systemic

immune system remains relatively ignorant of these organisms.
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be aseptically delivered by Caesarean section and hand-

reared, but thereafter the germ-free animals can be easily

interbred within the sterile environment.

Experiments with germ-free colonies of mice and other

species have been carried out for over 50 years. There are

two important general results obtained from many experi-

ments. First, the germ-free animal is an excellent culture

medium: if a single conventionally reared animal is sim-

ply placed in the same cage, the germ-free animals will

acquire a flora in the intestine and other body surfaces

within days.6 This is similar to the way in which a human

baby rapidly acquires an intestinal flora after leaving the

sterile uterus. Second, sequential histological and mole-

cular biological observations of germ-free animals as they

become colonized show that the presence of the bacterial

flora causes extensive adaptation of the host.7–12 The

composition of the mucosal immune system is changed

dramatically (as discussed in more detail below), but

there are also important changes in systemic immunity,

intestinal epithelial gene expression, intestinal angiogene-

sis and intestinal motility.2,13,14 Within the setting of

these complex adaptive changes, this review will focus on

the mechanisms of induction of humoral mucosal

immune responses by commensal bacteria, and the func-

tion of these responses in containing the commensals

within the lumen of the intestine.

Induction of mucosal immune responses

Induction and recirculation of mucosal lymphocytes

Classic papers from Gowans,15–17 Cebra18 and their col-

leagues showed that mucosal immunoglobulin A (IgA)

responses were induced in the Peyer’s patches, and that

IgA plasmablasts recirculate through the lymph and blood

stream to home back to the intestine to mature into IgA-

secreting plasma cells in the lamina propria. Similarly, a

proportion of intestinal T cells (CD8ab+ or CD4+ T-cell

receptor (TCR)a/b+) are induced in the Peyer’s patches

and follow a similar route.19–21

These early experiments used adoptive transfer of

lymphocytes to distinguish the source of lymphocyte

induction.18 Induced lymphocytes were shown to recircu-

late by two methods: (i) by cannulating the thoracic duct

to obtain samples of efferent intestinal lymph and (ii) by

surgically modifying the small intestine in rats to create

Thiry Vella loops. These segments of small intestine were

removed from the main stream with openings onto the

skin of the animal, although the vascular and lymphatic

connections were not disturbed. Immunization with chol-

era toxin in one intestinal segment was shown to result in

an IgA response in another which had not been exposed

to the antigen.

The cytokine-mediated mechanisms of IgA induction

were initially studied in cell culture during non-specific

B-cell stimulation, in which the media was supplemented

by purified cytokines, and their spontaneous effect on

class switch recombination to IgA was measured.22–26 In

the 1980s and 1990s the cytokine and cellular interactions

required for an IgA class switch were demonstrated

in vivo using murine strain combinations with spontaneous

and targeted immunodeficiencies. In some cases the read-

out was spontaneous production of IgA, which is defect-

ive in mice deficient in transforming growth factor-b
(TGF-b) signalling (TGFbRII–/–) and the tumour necrosis

factor (TNF) family member A proliferation-inducing

ligand (APRIL).27 In other studies a specific stimulus has

been used to induce IgA: this is usually cholera toxin,28,29

which is a powerful mucosal adjuvant, and the functional

outcome of mucosal immune induction can be tested by

neutralization of fluid accumulation within hours of

injecting a test dose of cholera toxin into a ligated intesti-

nal segment.30–32 The cholera toxin response requires

T-cell help, as it is defective in CD4–/– mice33 and animals

that are major histocompatibility complex (MHC) class II

deficient. Cholera toxin responses are also reduced in

interleukin (IL)-4–/– mice34 as well as cytotoxic T-lym-

phocyte antigen (CTLA)-4-Hc1 transgenic mice that

express a CTLA-4 protein construct under the control of

the immunoglobulin heavy chain promoter, which blocks

CD28«CD80/86 costimulation signals between T cells

and antigen-presenting cells.35 This led to the conclusion

that the process of IgA induction was substantially T-cell

dependent in vivo. However, it remained paradoxical that

many of the models (CD4–/–, IL-4–/–, and CTLA-4-Hc1
transgenics) in which cholera toxin induction of IgA was

defective, nonetheless had relatively normal numbers of

IgA-secreting plasma cells in the intestinal mucosa.33–35

The importance of dendritic cells for the IgA class

switch in addition to interactions between B and T

lymphocytes was also initially examined in ex vivo cell

culture.36–39 Antigen-presenting cells have been shown to

stimulate the class switch (to IgG and IgA) probably

through interactions between the TNF family members

B cell activating factor (BAFF) and APRIL on the anti-

gen-presenting cells and the BAFF receptor on B cells.40,41

In vivo APRIL-deficient mice have decreased spontaneous

levels of IgA and reduced specific switching to T-depend-

ent and T-independent immunization protocols.27

Induction of IgA against commensal bacteria

In contrast to toxin induction of IgA, the same process

triggered by commensal bacteria is not exclusively CD4-

dependent. Measurement of total IgA in mice that are

deficient in T cells as a result of targeted deletions of the

b and d chains of the T-cell receptor, showed that the

amount of IgA secreted was reduced to about a quarter

of that in wild-type animals but there remained a T-cell

independent component.42 The binding specificities to
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Enterobacter cloacae (a dominant aerobe of the com-

mensal intestinal flora in the Zurich colony of specific

pathogen-free mice) were identical whether studied in

wild-type or T-cell deficient animals.42 In animals defici-

ent for MHC-class II, IgA content has also been shown

experimentally to be normal despite disruption of cognate

interactions between antigen-presenting cells and T cells.43

T-cell independent mucosal IgA responses have also been

found to confer protective immunity when C57BL/

6 · 129 mice are challenged with rotavirus.44,45 Humans

with defective CD40-mediated signalling have also been

described with normal or high levels of serum IgA.46,47

Studies of IgA sequences also suggest indirectly that the

response to commensal bacteria does not depend on con-

ventional germinal centre reactions in which the affinity

of the antibodies is improved by sequential accumulation

of somatic hypermutations.48 This is unlikely to merely

reflect excess antigen binding to B-cell receptors, since

germinal centres form selectively in Peyer’s patches and

mesenteric lymph nodes in mice in which the B-cell

receptor (BCR) has been deleted, but a low level antigen-

independent constitutive signal is delivered by B-cell

expression of the Epstein–Barr virus protein LMP2A con-

taining an immunoreceptor tyrosine-based activation

motif.49 Experiments with antibiotics in BCR-deficient

LMP2A mice suggest that BCR-independent signals from

the intestinal flora are sufficient to drive germinal centre

formation in the mucosal lymphoid system, although the

details are unknown.49 In fact, even germinal centre for-

mation is not obligatory for IgA induction, which occurs

efficiently in the TNF receptor I-deficient strain.42

Sequence analysis of the alpha heavy chain and spectra-

typing of the CDR3 region length also shows that the rep-

ertoire of the (VHa) variable region in Peyer’s patch or

lamina propria tissues of mouse and man is surprisingly

restricted given the diversity of the commensal flora.48,50

Somatic mutation of intestinal VH genes increases with

age in humans51 although we do not know whether this

has occurred by classical affinity maturation of the BCR

or alternative signals from intestinal bacteria. Overall, the

observations suggest that induction of IgA by commensal

bacteria is rather a primitive system in which the produc-

tion of large amounts of antibody against bacterial surface

molecules with relatively low affinity, yet broad specificity,

is useful to limit their local colonization or penetration

through the epithelial layer.

In adult mice there are two sources of B-cell precur-

sors.52 The bone marrow has stem cells that give rise to

the conventional lineage of (B2) B cells. There are also

precursors in the pleuroperitoneal cavities for a different

(B1) lineage which are distinguished from B2 cells by

higher levels of B1 staining for surface IgM, Mac-1 and

CD5, and weaker staining with antibodies against B220
and IgD. Actually, the independence of these lineages is

controversial, because experiments in mice with B cell

receptor signalling abnormalities or a fixed antigen-bind-

ing specificity show that whether B cells exhibit the B1 or

B2 phenotype is dependent on the specficity and strength

of signalling from the B cell receptor.49,53 IgM antibodies

derived from B1 cells are reactive with polysaccharide

microbial antigens (induced in a T-independent fashion),

and are encoded by unmutated VH genes.52 The contribu-

tion of B1 cells to intestinal IgA has been estimated by

reconstitution of lethally irradiated animals with sources

of B1 and B2 cells where there are distinctive allotypic

differences in secreted immunoglobulins. These experi-

ments give estimates of about half the intestinal IgA and

most of the T-independent IgA being B1 derived.
42,54,55 In

a different experimental system, germ-free allotype chi-

meric mice were generated by repetitive antibody deple-

tion of endogenous neonatal B cells followed by transfer

of peritoneal cells.56 The final chimeras still had consider-

able numbers of recipient B1 cells in the peritoneal com-

partment (15–39%), so the system would underestimate

the B1 contribution to secreted antibodies on the basis of

their allotypic differences. However, 56–70 days after

recolonization with bacteria the donor allotype contribu-

tion to intestinal IgA was less than 15%. In a third

experimental system the intestinal IgA in MHC class

II-deficient animals was studied. Here, the levels of intes-

tinal IgA were relatively normal, despite the T-cell defici-

ency and disruption of cognate B–T interactions, but

intestinal IgA became very reduced when the animals also

carried the xid mutation resulting in deficient B1 cells.43

These inconsistent results leave open the exact contribu-

tion of B1 cells to intestinal IgA in mice. In man, CD5+ B

cells producing polyspecific antibodies form 15–20% of

the adult B-cell repertoire and constitute most neonatal B

cells, although there is no significant pleuroperitoneal

B-cell precursor population as in mice.57–59 It is not possi-

ble to assess the contribution of these B1-like cells to

intestinal IgA directly in man.

Another unresolved issue is where class switch recombi-

nation might occur for B1 cells.60 Flow cytometry of the

characteristic B2/B1 markers shows that effectively all

Peyer’s patch B cells have the B2 phenotype and B1 cells

in the peritoneum are IgM+. In animals that are deficient

for the TGF-b receptor (TGFbRII–/–), B1 lymphocytes do

appear in the Peyer’s patches, although whether this is

prolonging transitory presence in normal circumstances is

unknown.61 Class switch recombination has been des-

cribed in the intestine outside the Peyer’s patches62

although isolated lymphoid follicles may be contributing

to this process.63 It is has also been suggested that B1 class

switch recombination may take place in the mesenteric

lymph nodes.48,64

We found that significant intestinal IgA only occurred

in strains with some B-cell structures in the intestine,

although these could be very disorganized, for example

without follicular dendritic cells and germinal centres in
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mice deficient for the TNF receptor I.42,65 Regardless of

relative B1/B2 contributions, the IgA response has a

restricted VH repertoire of intestinal immunoglobulin a
heavy chains in mouse48 and man.50 This supports the

primitive nature of the overall IgA response, mostly

induced in the presence of commensal bacteria, as a high

capacity, broad specificity, low affinity system, not

dependent on conventional B–T interactions for affinity

maturation. The system is eminently suitable for produ-

cing antibodies that will bind to a very diverse bacterial

flora with multiple redundant surface epitopes.42,66

Intestinal IgA can be experimentally induced in C57BL/

6 wild-type mice by repeated administration of live bac-

teria into the intestine.6 Unlike the T-dependent cholera

toxin response, which induces serum IgG and IgE in

addition to IgA67 the commensal conditioning method of

mucosal stimulation is entirely specific for IgA. Condi-

tioning doses of bacteria result in loading of live bacteria

in Peyer’s patch dendritic cells (DC) – when these DC are

isolated and cultured with naive mesenteric B ± T cells,

both surface expression and secretion of IgA by the B

cells is induced. Neither the in vivo conditioning response

nor the ex vivo IgA induction will work when the animals

are treated with heat-killed bacteria.6

The mechanisms for the specificity of IgA induction, as

opposed to class switch recombination to other isotypes

are not clearly understood. TGF-b signalling from diverse

mucosal cell types is clearly important from models both

in vitro22 and in vivo61 and there may also be direct inter-

actions between antigen-presenting cells and B cells

enhanced by the TNF family members BAFF and

APRIL.27,40 These unconventional mechanisms of class

switch recombination may also be able to occur without

prior B-cell receptor engagement.65,68

Despite the enormous amount of IgA that is secreted

daily across the intestinal epithelium, there are very few

studies that address its function in relationship to com-

mensal intestinal bacteria. Mice that are genetically defici-

ent in the polymeric immunoglobulin receptor (pIgR)

that transports IgA and IgM across the epithelial cell

layer69–71 have a protein-losing enteropathy in which

serum proteins are lost into the intestinal lumen as a

result of damage to the paracellular permeability barrier.72

Two functional mechanisms of mucosal IgA secretion

have been described. First, IgA antibody-coated commen-

sal bacteria are excluded from penetrating the intestinal

epithelium. This observation came from experiments in

which the intact mucosa was challenged either by recolo-

nizing germ-free animals or by delivering an experimental

dose of intestinal bacteria to animals that already had an

established commensal flora.6,9 Overall therefore IgA is

protective against penetration of luminal bacteria, pre-

sumably by limiting their motility or access to the epithe-

lial surface, but it is possible that IgA receptors of M cells

facilitate sampling of live bacteria in the Peyer’s patches

and isolated lymphoid follicles.73–75 Second, in the

absence of IgA, luminal densities of the commensal

organisms are not properly controlled.63 The evidence for

this comes from activation-induced cytidine deaminase

deficient (AID–/–) mice, which have an anaerobic over-

growth in the lower intestine. AID–/– mice are deficient in

IgA (and other class-switched isotypes) and affinity

matured IgM as a result of defective class switch recombi-

nation and somatic hypermutation.

These mechanisms of IgA induction against commen-

sals are only a component of the overall way in which the

immune system adapts to the presence of such a large

load of intestinal bacteria. In the following section we will

discuss host–commensal bacterial mutualism in its wider

immune context.

Special features of immune adaptation against
commensals

The nature of mucosal immune adaptation

Adaptive immune responses against pathogens must be

able to assist the innate immune system in one of the fol-

lowing ways: prevent a virus from entering host cells to

establish a productive infection; kill infected host cells;

neutralize the effects of an exotoxin; or opsonize patho-

gens with antibody to enhance their elimination through

complement fixation and phagocytosis. Adaptation to

commensal bacteria is fundamentally different. Here the

important barrier is the epithelial surface with its mucus

coat. Commensals live almost entirely within the intestinal

lumen or within the mucus coat barrier, whereas pathogens

are found within the body, having attached to the epithelial

surface or penetrated it. Mutualism dictates that innocent

bacteria above the epithelial surface or within the mucus

should be tolerated, but bacteria penetrating the epithelial

barrier need to be rapidly eliminated.

Mucosal immune adaptation to commensals is not

purely an adaptive immune response. Animals without B

or T cells (scid or RAG–/–) are able to survive with an intes-

tinal bacterial flora without problems in pathogen-free

facilities.76 However, when (innate) biocidal mechanisms

of phagocytes are seriously deficient, such as in a strain

lacking both inducible nitric oxide and superoxide gen-

eration, animals will succumb to systemic sepsis from

penetrating commensals.77 In general, intestinal bacterial

pathogens have mechanisms of avoiding or subverting pha-

gocyte biocidal activity.78 Commensals that do penetrate

allow themselves to be phagocytosed and eliminated;6

otherwise they would trigger inflammation that would des-

troy their luminal habitat. Retaining susceptibility to host

macrophage biocidal mechanisms are probably an evolu-

tionary adaptation of bacteria to ensure commensal status.

Since the essential mechanisms for mutualism with

commensals are the physical epithelial/mucus barrier and
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phagocyte biocidal activity, what part do secreted anti-

bodies or mucosal T cells play? Deficiency of either leads

to increased levels of commensals within the mucosa or

the draining mesenteric lymph nodes.6,79–81 Luminal com-

mensal bacteria that have been coated by secretory anti-

body are probably restricted from accessing the mucus

layer to reach the epithelial surface or penetrate it.6,79,81,82

T cells probably work both by activating macrophages

and amplifying the class switch to IgA.5 Unlike the adap-

tive responses against pathogens which must be of high

affinity and specificity83 the antibody responses against

the commensal flora are of broad specificity42 and prob-

ably relatively low affinity, although this remains to be

measured.

The object of mucosal adaptation to commensals is to

accomplish the transition from 1012 bacterial c.f.u./ml to

approaching sterility within the 20 lm distance between

the luminal mucus surface and the basolateral surface of

the enterocytes. In this context, expenditure of energy to

increase secretory antibody affinity is probably not justi-

fied, as the commensal flora is so diverse, and low num-

bers of bacteria that do penetrate can easily be eliminated

through innate immune mechanisms.

Systemic ignorance of intestinal commensal bacteria

A second issue regarding immune responses to commen-

sal bacteria is whether there is a need to induce tolerance

of the systemic immune system. Studying serum IgG

responses against commensals, we found that pathogen-

free mice had no specific IgG against Enterobacter cloacae,

a dominant aerobe in the commensal flora of the colony,

whereas this was easily induced 14 days after injecting

104)106 live organisms intravenously.42 In other words,

the reason for non-responsiveness in the unmanipulated

mice was ignorance rather than tolerance of these organ-

isms. This experiment also shows that if the same com-

mensal bacteria reach the systemic immune system,

priming is very efficient: unlike clean mice, Western blots

of commensals using human IgG show that humans are

mostly primed to commensal bacteria84 presumably

because an infection has resulted in a sufficient systemic

bacteraemia for priming to occur. Again, this argues

against significant systemic tolerance from intestinal

commensals – compartmentalizing the system and preser-

ving the ability to mount good systemic responses against

commensal epitopes is probably important for good anti-

bacterial immunity.

Immune geography of responses to commensal
bacteria

The way in which the mucosal immune system accompli-

shes the trick of inducing a local immune response to

commensals without needing to suppress a systemic

immune response lies in the distinct immune geography

of the intestines compared with the rest of the body. Here

the critical barrier is formed by the mesenteric lymph

nodes. The evidence for this is that when mice are chal-

lenged with high doses of commensal bacteria into the

intestines, small numbers of live bacteria can be detected

in dendritic cells of the Peyer’s patches and (later) in the

mesenteric lymph nodes.6 As long as the mesenteric

lymph nodes are intact, dendritic cells loaded with com-

mensal bacteria do not penetrate any further and cannot

reach systemic secondary lymphoid structures. If the mes-

enteric lymph nodes are absent a single intestinal chal-

lenge with commensals gives culturable organisms in the

spleen, and repeated challenge causes dramatic spleno-

megaly and enlargement of the splenic marginal zones.6

The immune geography of the intestinal immune sys-

tem therefore depends on restricting mucosal induction

by particulate bacteria to the mucosal immune system

itself. This is a supreme example of compartmentalizing

an immune response, as the mucosa contains about

three-quarters of the total immune system in animals col-

onized by intestinal bacteria. This compartmentalization,

shown in Fig. 1, is accomplished through the following

features:

(1) By having specialized induction sites in which the

appropriate signals are available for correct class switch

recombination (IgA) and imprinting for lymphocyte

homing signals. These are necessary to allow breaks in the

tight mucosal barrier in which commensals and other

luminal antigens can be sampled because the mucus layer

and epithelial glycocalyx is reduced. IgA coating of com-

mensals may actually facilitate uptake of bacteria through

M cells expressing IgA receptors.73–75

(2) By induction upstream of the mesenteric lymph

nodes by DC that can travel from the Peyer’s patches to

the mesenteric lymph nodes, but do not re-circulate

within the body. This avoids unnecessary systemic pri-

ming by powerful and abundant particulate antigens that

contain endogenous adjuvant because of their content of

Toll-like receptor ligands. Because the innate immune sys-

tem can deal with these bacteria through phagocytic

microbiocidal activity, excessive induction of adaptive

immunity with accompanying polyclonal responses might

break tolerance to host antigens.

(3) By the effector cells being able to re-circulate to

populate sites remote from the inductive sites. This allows

the remainder of the mucosa to be populated by cells that

contribute to limiting the penetration of commensals, yet

large numbers of live commensals do not need to penet-

rate to induce immune responses and most of the mucosa

underneath the epithelium can remain almost sterile.

Dendritic cells (DC) have been shown to protrude pro-

cesses between epithelial cells of the intestinal (ileal) vil-

lus, particularly the DC subset that express the chemokine

receptor CX3CR1.
85,86 These DC are able to sample
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Figure 1. Intestinal immune geography of responses to commensal bacteria. Commensal bacteria are found in high densities within the lumen of

the lower intestine but are largely restricted from gaining access due to the physical epithelial and mucus barriers. However, small numbers of

commensals are allowed to penetrate through the epithelial barrier into specialized inductive sites known as Peyer’s patches or isolated lymphoid

follicles, where they are picked up by dendritic cells or phagocytosed and destroyed by macrophages. DC presenting commensal bacterial antigens

can traffic only as far as the mesenteric lymph nodes, which form the barrier between the mucosal and the systemic immune system. In contrast,

activated lymphocytes (T and B cells) can circulate through the lymph and bloodstream and traffic back to the mucosa to populate sites remote

from the inductive sites. IgA-secreting plasma cells are found in the lamina propria, where the secreted dimeric IgA can pass through the epithe-

lial cells by binding to the poly immunoglobulin receptor (pIgR) on the basolateral membrane, leading to its internalization, transport to the

luminal surface, enzymatic cleavage of the pIgR and thus release of secretory IgA into the intestinal lumen. Commensal bacteria coated with IgA

are then restricted from passing through the intestinal mucosa and their luminal densities are modulated.
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commensals or pathogens at the epithelial surface and also

transport them to the mesenteric lymph nodes. This pro-

vides a mechanism of monitoring organisms that penet-

rate the surface mucus layer, or bacterial colonies that

proliferate within the mucus as an organized biofilm con-

sortium. Only tiny proportions (approximately 0�0001%)

of a challenge dose of intestinal bacteria actually reach

DC either in the villi or the Peyer’s patches. In our

experiments, penetration into the Peyer’s patches was by

far the most efficient pathway6 although this may to some

extent reflect the experimental setup, because a challenge

dose of bacteria is prevented from reaching the villous

epithelial surface by the combination of the mucus and

the epithelial glyocalyx. Nevertheless, we propose that the

DC in the Peyer’s patches and isolated lymphoid follicles

promiscuously sample intestinal luminal commensals,

whereas lamina propria DC sample those bacteria within

the surface mucus layer.

These features allow the commensals to be sensed in

small numbers, causing induction of an IgA response.

Repeated challenge of experimental animals with live

intestinal commensals selectively increases the levels of

mucosal secretory and serum IgA.6 These increased secre-

tory IgA levels in turn limit the penetration of intestinal

bacteria from an experimental challenge, so the system

works through a negative feedback mechanism.6 Such

immune exclusion may also be the way in which IgA

secreted through the milk during lactation can delay the

induction of IgA in the neonatal mucosal immune system

in experiments where scid/+ neonates are suckled either

by scid/scid or wild-type dams.87

As discussed earlier adaptive immunity is not essen-

tial to tolerate commensal intestinal bacteria. Experi-

ments in which germ-free animals are re-colonized by

an intestinal flora show that antibody-deficient mice

have a longer-lasting leak of commensals through the

intestinal mucosa compared with wild-type controls,

but even the antibody-deficient strain can adapt to stop

bacterial penetration 35 days after recolonization.6 Thus,

the negative-feedback mechanism of sensing commensal

bacteria and inducing IgA to limit their translocation

from the intestinal lumen into mucosal and systemic

tissues is a layer of the protection mechanism, but is

not essential. Antibody-dependent mechanisms of adap-

tation are therefore only a part of overall adaptation.

This also includes T-cell driven macrophage activation5

reprogramming of epithelial gene expression2,14,88 and

compensatory defence from intestinal epithelial lympho-

cytes.89 These all supplement the permeability barrier

formed by epithelial cells interconnected by tight junc-

tions with a surface covering of mucus and antibacterial

peptides, including defensins and cathelicidins.90,91

Multilayered protection is probably an essential evolu-

tionary failsafe mechanism in the face of such an abun-

dant antigen challenge.

Conclusions

In this article we have reviewed the evidence that the

mucosal immune system contributes to protection against

penetration by commensal intestinal bacteria. The con-

trast between germ-free animals and those with commen-

sal bacteria in the intestine is stark: whereas the mucosal

immune system of germ-free animals is hypoplastic, after

the introduction of commensal bacteria the majority of

the all the body’s leucocytes are in the intestine. To main-

tain constant mutualism with commensal bacteria is

probably the greatest challenge facing the immune system.

This challenge is constant, and to meet it vigorous

immune responses are induced.

Because DCs loaded with commensal bacteria that

induce responses to commensals do not penetrate further

than the draining mesenteric lymph nodes, protective

mucosal immunity to commensals is separated from

systemic immunity. In this way the systemic immune

system can be kept completely ignorant of commensals

in pathogen-free animals, and probably relatively so in

most circumstances, avoiding unnecessary and potentially

dangerous responses potentially capable of triggering

autoimmunity.

The geography of the mucosal immune response there-

fore depends on induction mainly in intestinal follicles or

mesenteric lymph nodes and recirculation of the induced

lymphocytes via the lymph and blood stream to populate

other parts of the intestinal lamina propria. It has been

considered that this recirculation integrates mucosal

immunity at different sites. However, the most important

advantage may be that the compromise of allowing

immune induction to commensals primarily in the leaky

follicles permits the lamina propria to be kept almost sterile

by the combination of a physical permeability barrier

formed by the epithelium and its overlying mucus and anti-

bacterial defences, including secretory antibodies and secre-

ted peptides. Within this system secretory IgA is the

commensal–bacterial responsive negative feedback mech-

anism, able to respond with specific immune exclusion to

different densities and compositions of the intestinal flora.
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